Canonical Heights on Hyperelliptic Curves

نویسنده

  • David Holmes
چکیده

We describe an algorithm to compute canonical heights of points on hyperelliptic curves over number fields, using Arakelov geometry. We include a worked example for illustration purposes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Néron-tate Heights of Points on Hyperelliptic Jacobians

It was shown by Faltings ([Fal84]) and Hriljac ([Hri85]) that the Néron-Tate height of a point on the Jacobian of a curve can be expressed as the self-intersection of a corresponding divisor on a regular model of the curve. We make this explicit and use it to give an algorithm for computing Néron-Tate heights on Jacobians of hyperelliptic curves. To demonstrate the practicality of our algorithm...

متن کامل

Explicit p-adic methods for elliptic and hyperelliptic curves

We give an overview of some p-adic algorithms for computing with elliptic and hyperelliptic curves, starting with Kedlaya’s algorithm. While the original purpose of Kedlaya’s algorithm was to compute the zeta function of a hyperelliptic curve over a finite field, it has since been used in a number of applications. In particular, we describe how to use Kedlaya’s algorithm to compute Coleman inte...

متن کامل

Explicit Coleman Integration for Hyperelliptic Curves

Coleman’s theory of p-adic integration figures prominently in several number-theoretic applications, such as finding torsion and rational points on curves, and computing p-adic regulators in K-theory (including p-adic heights on elliptic curves). We describe an algorithm for computing Coleman integrals on hyperelliptic curves, and its implementation in Sage.

متن کامل

Ordinary plane models and completely split divisors

Let C be a smooth, non-hyperelliptic curve over an algebraically closed field of genus g ≥ 4. We show that the projection from the canonical model of C through (g−3) generic points on C is a birational morphism to a plane curve which has only finitely many non-ordinary tangents, that is, flexor bitangents. For smooth, non-hyperelliptic curves of a fixed genus g ≥ 4 over finite fields, we show t...

متن کامل

The Mixed Hodge Structure on the Fundamental Group of Hyperelliptic Curves and Higher Cycles

Abstract. In this paper we give a geometrical interpretation of an extension of mixed Hodge structures (MHS) obtained from the canonical MHS on the group ring of the fundamental group of a hyperelliptic curve modulo the fourth power of its augmentation ideal. We show that the class of this extension coincides with the regulator image of a canonical higher cycle in a hyperelliptic jacobian. This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010